President’s Message
By Brad Huber

For this month’s meeting, we again land on Valentine’s Day. As it was well received in the fall, we’ve decided to hold this meeting over another lunch hour. For this month, we are honored to host Darren Alexander, P.Eng. of TWA Panel Systems Inc. This open forum presentation will focus on a discussion relative to the system, air-side, water-side, and control elements, which can be optimized for low-stress: design, construction, and commissioning.

On March 14th, we will be hosting our technical seminar which will be presented by ASHRAE distinguished lecturer - Devin Abellon, P.Eng. with Uponor Inc. Our technical seminar topic will be focused on “Radiant Heating and Cooling Systems Design from Concept to Completion”. Please keep an eye out for our flyer which will provide details for the seminar!

Devin Abellon will also be our speaker for the March meeting. The meeting will consist of an entirely different topic – “The (un)Ethical Engineer”.

Meeting Notice

Wednesday, February 14, 2018

Chapter Lunch Meeting
Avoiding Common Pitfalls in the Applications, Installation, and Commissioning of Active Beams
Presented by Darren Alexander
Location: Double Tree Hotel
(Swift Current Room)
1975 Broad Street

12:00 – Members arrive and go through buffet line
12:15 – Speaker Presentation
12:45 – Chapter Meeting
1:00 – Adjourn Meeting

Upcoming Events

March 14, 2018

Chapter Meeting
The (un)Ethical Engineer
Presented by Devin Abellon
Committee Chair Reports

Vice President and Programs
By Natasha Skea

This month we are excited to welcome our guest speaker Darren Alexander from TWA Panel Systems Inc. Darren is a professional engineer with over 20 years of industry experience. After graduating from the University of New Brunswick, Darren worked his way northwest and is now based out of Nisku, AB. In 2008 Darren took a more active role in ASHRAE by joining Technical Committee 5.3 (Active Beam Selection). The topic of discussion for our upcoming meeting will be active beams and a summary is provided below.

Avoiding Common Pitfalls in the Application, Installation, and Commissioning of Active Beams – Presented by Darren Alexander

Beams are gaining in popularity throughout North America due to their ability to potentially lower HVAC operating costs, enhance thermal comfort, provide flexible air distribution solutions, and improve energy recovery options. However, as with all applied systems, there are nuances relative to their application that can “make-or-break” a project. This open forum presentation will focus on a discussion relative to the system, air-side, water-side and control elements, which can be optimized for low-stress: design, construction, and commissioning.

Membership
By Alana Yip

We are having a membership promotion draw at the March meeting. For any new society memberships assigned to our chapter since January 10th until the March meeting will be entered into a draw for a prize pack worth $100! Anyone who has referred those members to sign up will be entered into a draw for a prize pack worth $50! Please send those referrals to me at alana.yip@sasktel.net or if you know they have signed up, let me know you encouraged them. Together we can meet our goal for membership of 100 AAM.

Consider inviting that co-worker, colleague, consultant, or contractor that you feel should be involved in ASHRAE to our March meeting. It is scheduled for March 14th and will be a Membership Promotion night. Guest meals are only $40 for a great
meal, networking and an informative speaker. We will be hosting ASHRAE Distinguished Lecturer Devin Abellon.

Thanks for all your help!

Student Activities
By Cailin MacPherson

ASHRAE will has been invited back to do another after school program at Mother Teresa Middle School. I am planning to focus more on engineering as a profession this go. If anyone is interested in joining me for a session please let me know. Student activities are also planning on creating a scholarship to send a couple children to a STEM camp – more on that later.
Energy Recovery Technologies

Energy recovery is a common solution to provide comfort ventilation for commercial and institutional applications. Due to the large variety of technologies, there is a need to differentiate the advantages of each. Three of the most common technologies in the energy recovery market are:

1. Total Energy Wheel
2. Total Energy Core
3. Sensible Aluminum Plate

Although ASHRAE 90.1 drives when energy recovery should be applied, understanding the composition, design and total efficiency of these technologies can add to an educated decision on which technology will be the best for an application.

Total Energy Wheel

Construction and Performance

Total energy wheels are the most efficient energy recovery device currently available in the market, with the capability to transfer both sensible and latent energy. Wheel technologies have a total effectiveness up to 80 percent when the supply and exhaust airflows are balanced. There are two predominate types of total energy wheel media: aluminum wheels and polymer wheels. Both of these wheels have the capability of transferring latent energy by applying a desiccant to the wheel, but the application of the desiccant significantly varies between the two types of wheel. Although desiccants can be applied in different ways to the wheel media, the aluminum wheel most commonly uses a molecular sieve desiccant that is sprayed onto the surface of the wheel, whereas a polymer wheel uses a silica gel desiccant that is embedded into the polymer material by a solvent. By embedding the desiccant into the polymer material, the desiccant has roots in the material as indicated in Figure 1.

Due to these roots, the desiccant embedded into the polymer material will not wear over time and the unit will continue to perform with an 80 percent total effectiveness. Unlike the desiccant on the polymer wheel, the sprayed-on molecular sieve on the aluminum wheel tends to wear and flake off over time, which has the potential to decrease the latent energy transfer of the aluminum wheel. As a result, the polymer wheel has a longer latent energy lifespan compared to that of the aluminum wheel.

Maintenance

The polymer energy wheel is composed of pie-shaped wheel segments as indicated in Figure 2, while the aluminum wheel is designed as one solid wheel. A segmented wheel is beneficial because each segment can be removed and physically washed. Polymer wheel manufacturers recommend washing the polymer wheel every two years to remove any particles or oils that may have accumulated on the wheel. However, because the wheel is constantly rotating, it is always being cleaned by the counter-flowing air streams. Because
all of the energy transfer occurs in the vapor stage, the wheel is always dry. Thus, if particles deposit on the surface of the wheel, they will be displaced when the wheel rotates because of the counterflow airstreams. This cleaning process occurs with every wheel rotation, approximately 30 to 60 times per minute.

Applications

Another advantage of using the polymer energy wheel in high airflow applications is the unit footprint compared to other energy recovery methods. With other technologies, such as a total energy core, the unit footprint significantly increases as the airflow application increases because several cores will need to be stacked in series. With an energy wheel, the additional airflow can be accounted for by increasing the diameter of the wheel by up to three inches. This small increase will not significantly impact the overall size of the energy recovery unit. Due to the smaller footprint impact, polymer energy wheels are quite common in high airflow applications above 2,500 cfm.

Because the energy wheel is extremely effective and can lead to high energy savings, it is commonly used in many applications that require high percentages of outdoor air. Some applications that use total energy wheels are office buildings, hotels, schools, dormitories and locker rooms. Additionally, energy recovery wheels can be applied to recover energy from bathroom exhaust. The ASHRAE Standard 62.1 dictates that energy recovery devices rated for less than 10 percent cross leakage can return rest room exhaust through the technology to maximize energy saved. Because the cross leakage through the polymer energy wheel is below 10 percent, it is approved for these types of applications.

Total Energy Core

Construction and Performance

Similar to a total energy wheel, a total energy core transfers both sensible and latent energy, but has a lower total effectiveness of 60 percent. The energy core is manufactured as a corrugated and layered hydroscopic resin or polymer material. The supply and exhaust airstreams travel through the corrugated pathways and the energy transfer occurs through the material. This results in an extremely low cross leakage rating between the supply and exhaust airstreams.

Maintenance

Maintenance of the core is different compared to that of the total energy wheel. Because the core does not rotate between the two airstreams, it is recommended to vacuum off the core’s surfaces to ensure that debris does not accumulate and block the airstreams. It is not recommended to wash the core because water will damage the hydroscopic resin which makes up the core technology.

Applications

With no belts or moving parts, the total energy core is a simple technology. Although the cores have a lower total effectiveness when compared to wheel technology, they are popular in low airflow applications (below 2,500 cfm) because the footprint of the unit is relatively small and there are no belts or motors to maintain on the transfer device. The core technology is most commonly found in commercial applications such as schools, dormitories, offices, nursing homes and locker rooms. In addition, with extremely low cross leakage ratings, the core technology is recommended for bathroom exhaust applications as well.

Aluminum Plate

Construction and Performance

The sensible-only aluminum plate has the lowest total effectiveness of the three energy recovery technologies discussed because it transfers only sensible energy. The plate is 75 percent effective when transferring sensible energy, but does not transfer any latent energy, which
results in a total effectiveness of 30 percent (summer conditions).

Applications

Similar to the core technology, the aluminum plate is stationary and does not rotate between two airstreams, resulting in minimal cross-contamination. This feature, along with its aluminum construction, allows the technology to be applied in light industrial applications, as well as commercial and institutional comfort applications. In addition, since the aluminum plate only transfers sensible energy, it is most commonly applied in dry applications such as the southwestern portion of the United States.

Standards, Codes, and Certifications

Energy recovery applications are highly driven by the ASHRAE 90.1 standard. The 2010 version of the standard requires the use of energy recovery based upon a unit’s supply airflow, outdoor air percentage, and geographic location as indicated in Figure 3 below. This language is adopted by the 2012 International Energy Conservation Code.

The standard mandates that the total effectiveness of the energy recovery technologies be a minimum of 50%. This value is determined based on the test procedure outlined in the Air-Conditioning, Heating, and Refrigeration Institution (AHRI) Standard 1060. In addition to outlining testing procedures, AHRI also facilitates third-party performance certification for energy recovery technologies. To ensure that the performance data provided by manufacturers is accurate, AHRI will post all energy recovery manufacturers’ performance data on the AHRI Directory online (https://www.ahridirectory.org) and facilitate third-party testing with an accredited laboratory. For additional information on the AHRI Standard 1060, please reference the application article ERA/109-02.

Summary

Understanding the differences between the total energy wheel, total energy core, and aluminum plate will help to apply the best energy recovery technology to a specific application. The primary benefits of each technology include:

- **Total Energy Wheel**: With a total effectiveness of 80 percent and the capability to clean the technology, polymer total energy wheels have the highest energy transfer in the market with ensured longevity.
- **Total Energy Core**: Great for applications below 2,500 cfm as they are low maintenance and provide a small footprint.
- **Aluminum Plate**: Only transfer sensible energy, making it a great technology for applications in dry regions.

See the following page to view a comparison of energy recovery technologies.

Table: Percentage of Outdoor Air at Full Design Airflow Rate (cfm)

<table>
<thead>
<tr>
<th>Zone</th>
<th>30% ≤ 40%</th>
<th>40% ≤ 50%</th>
<th>50% ≤ 60%</th>
<th>60% ≤ 70%</th>
<th>70% ≤ 80%</th>
<th>≥ 80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B, 3C, 4B, 4C, 5B</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>≥ 5,000</td>
<td>≥ 5,000</td>
</tr>
<tr>
<td>1B, 2B, 5C</td>
<td>NR</td>
<td>NR</td>
<td>≥ 26,000</td>
<td>≥ 12,000</td>
<td>≥ 5,000</td>
<td>≥ 4,000</td>
</tr>
<tr>
<td>6B</td>
<td>≥ 11,000</td>
<td>≥ 5,500</td>
<td>≥ 4,500</td>
<td>≥ 3,500</td>
<td>≥ 2,500</td>
<td>≥ 1,500</td>
</tr>
<tr>
<td>1A, 2A, 3A, 4A, 5A, 6A</td>
<td>≥ 5,500</td>
<td>≥ 4,500</td>
<td>≥ 3,500</td>
<td>≥ 2,000</td>
<td>≥ 1,000</td>
<td>≥ 0</td>
</tr>
<tr>
<td>7, 8</td>
<td>≥ 2,500</td>
<td>≥ 1,000</td>
<td>≥ 0</td>
<td>≥ 0</td>
<td>≥ 0</td>
<td>≥ 0</td>
</tr>
</tbody>
</table>

NR = Not recommended
Energy Recovery Technology Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Total Energy Wheel</th>
<th>Total Energy Core</th>
<th>Sensible Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Transfer</td>
<td>Sensible & Latent</td>
<td>Sensible & Latent</td>
<td>Sensible</td>
</tr>
<tr>
<td>Total Effectiveness</td>
<td>80%</td>
<td>60%</td>
<td>30%</td>
</tr>
<tr>
<td>Media</td>
<td>Polymer or Aluminum</td>
<td>Hydroscopic Resin</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Desiccant</td>
<td>Molecular Sieve or Silica Gel</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Applications</td>
<td>Commercial</td>
<td>Commercial</td>
<td>Commercial & Light Industrial</td>
</tr>
<tr>
<td>Benefits</td>
<td>Highest total effectiveness</td>
<td>No moving parts</td>
<td>No moving parts</td>
</tr>
<tr>
<td></td>
<td>Segmented construction</td>
<td>Extremely low cross leakage</td>
<td>Can be applied in light industrial applications</td>
</tr>
<tr>
<td></td>
<td>Segments can be washed</td>
<td>Popular in low airflow applications due to small footprint and low maintenance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recommended for bathroom exhaust</td>
<td>Recommended for bathroom exhaust</td>
<td></td>
</tr>
</tbody>
</table>
2017-2018 Meetings and Events

September 13, 2017
Wascana Boiler House Tour
Led By: Doug Elder – Chief Engineer
Location: Travelodge Hotel

October 11, 2017
Lunch Meeting – 12:00-1:00 pm
Topic: ASHRAE Cold Building Climate Guide
Speaker: Erich Binder
Location: Double Tree

November 15, 2017
Topic: Sustainable Applications that Work
Speaker: Terry Townsend
Location: The Hotel Saskatchewan

December 14, 2017
Christmas Social
Wizard of Oz
Location: Conexus Arts Centre

January 10, 2018
Topic: Gas Detection Basics
Speaker: Greg Reeves
Location: Travelodge Hotel

January 22-24, 2018
ASHRAE Winter Conference
Chicago, Illinois

February 14, 2018
Lunch Meeting – 12:00-1:00 pm
Topic: Avoiding Common Pitfalls in the Application, Installation, and Commissioning of Active Beams
Speaker: Darren Alexander
Location: Double Tree

March 14, 2018
Topic: The (un)Ethical Engineer
Speaker: Devin Abellon
Location: TBD

April 11, 2018
Topic: Student Night
Student Night
Location: TBD

May 9, 2017
TBD

June 2018
ASHRAE/MCA Research Golf Tournament
2017-2018 ASHRAE Regina Chapter Board of Governors

President
Brad Huber
Cypress Sales Partnership
b.huber@cypresssales.com

Past President & Research Promotion
Jared Larson
MacPherson Engineering Inc.
j.jarson@mac-eng.ca

President Elect & Programs Chair
Natasha Skea
WSP Canada Inc.
natasha.skea@wspgroup.com

Membership Promotion
Alana Yip
SaskTel
alana.yip@sasktel.net

Secretary
Pierre-André Ranger
Johnson Controls Canada LP
pierre-andre.ranger@jci.com

Student Activities
Cailin MacPherson
MacPherson Engineering Inc.
c.macpherson@mac-eng.ca

Treasurer
Josh Thomas
Cypress Sales Partnership
j.thomas@cypresssales.com

Ways & Means
Wayne Tkach
MacPherson Engineering Inc.
w.tkach@mac-eng.ca

Historian
Bob England
RJ England Consulting Ltd.
bob@rjengland.com

GGAC (Government Grassroots Advocacy Committee) Chair
Janel Walter
SaskPower
jwalter@saskpower.com

YEA (Young Engineers in ASHRAE) Chair
Dylan Zwozdesky
Brandt Developments Ltd.
dzwozdesky@brandt.ca

Newsletter
Carla Drager
All-Rite Mechanical Ltd.
carla.drager@allrite.ca

Contact us at:
ashraeregina@gmail.com

Visit us at:
http://regina.ashraechapters.org/
2017-2018 ASHRAE Society Executive

Executive Committee

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>President</td>
<td>Bjarne Olesen</td>
<td>Kongens Lyngby, Denmark</td>
</tr>
<tr>
<td>President-Elect</td>
<td>Sheila Hayter</td>
<td>Golden, Colorado</td>
</tr>
<tr>
<td>Treasurer</td>
<td>Darryl Boyce</td>
<td>Ottawa, Canada</td>
</tr>
<tr>
<td>Vice President</td>
<td>Ginger Scoggins</td>
<td>Raleigh, North Carolina</td>
</tr>
<tr>
<td>Vice President</td>
<td>Edward Tsui</td>
<td>Hong Kong</td>
</tr>
<tr>
<td>Vice President</td>
<td>Julia Keen</td>
<td>Manhattan, Kansas</td>
</tr>
<tr>
<td>Vice President</td>
<td>Michael Schwedler</td>
<td>La Crosse, Wisconsin</td>
</tr>
<tr>
<td>Vice President</td>
<td>Jeff Littleton</td>
<td>Atlanta, GA</td>
</tr>
</tbody>
</table>

Directors – at – large

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Baxter</td>
<td>Oak Ridge, Tennessee</td>
</tr>
<tr>
<td>Donald Brandt</td>
<td>Phoenix, Arizona</td>
</tr>
<tr>
<td>Dennis Knight</td>
<td>Mt. Pleasant, South Carolina</td>
</tr>
<tr>
<td>Lawrence Markel</td>
<td>Knoxville, Tennessee</td>
</tr>
<tr>
<td>William McQuade</td>
<td>York, Pennsylvania</td>
</tr>
<tr>
<td>Erich Binder</td>
<td>Calgary, Canada</td>
</tr>
<tr>
<td>Essam Khalil</td>
<td>Egypt</td>
</tr>
<tr>
<td>Thomas Lawrence</td>
<td>Athens, Georgia</td>
</tr>
<tr>
<td>Tim McGinn</td>
<td>Calgary, Canada</td>
</tr>
</tbody>
</table>
2017-2018 ASHRAE Regional Executive

Director and Regional Chair
Keith Yelton
Portland, Oregon

Regional Members Council
Representative
Russ Lavitt
Winnipeg, Manitoba

Chapter Technology Transfer
Heric Holmes
Edmonton, Alberta

Student Activities
Jared Larson
Regina, Saskatchewan

Nominating Committee Member
Rob Craddock
Regina, Saskatchewan

Nominating Committee Alternate
Jeff Hurd
Anchorage, Alaska

Treasurer
Tom Jacknisky
Edmonton, Alberta

RP RVC
Ruth Armstrong
Eagle River, Alaska

GGAC RVC
Jeff Hurd
Anchorage, Alaska

Regional Historian
Doug LeCren
Anchorage, Alaska

YEA Regional Chair
Gregory Jernstrom
Anchorage, Alaska

Membership Promotion RVC
Greg Fluter
Regina, Saskatchewan

Regional Webmaster
Emily Winfield
Alaska